

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

61

 Abstract— In order to develop quality software, it must be

designed according to the requirements. Software requirements

have a brunt on the design, and the design, in turn, has a severe

brunt on the software development phase. UML diagram is an

ideal choice for software developers who need to demonstrate

and deduce relationships, actions, and connections of a software

application using the Unified Modeling Language (UML)

notation. It has been the design tool of choice for years with the

supremacy of object oriented software engineering. The software

designer must go through the software requirements

specifications (SRS) and has to select the identifiers manually

for the UML Models. The proper choice of identifiers facilitates

software understandability and maintainability. Several software

engineers and researchers have stated that identifiers are the

most vital informative components of software development

entities. The proposed approach extracts the valid information

from the software requirement specification and suggests

suitable names for identifiers for constructing UML Models.

This could be achieved by using a semantic analyzer that

recognizes the given identifiers and extracts relevant short

identifiers using dictionary. If the identifier name is large, then

suitable shorter name can be extracted using semantic analyzer.

 Index Terms—Identifier, Software Requirements

Specification, Semantic Analyzer, Unified Modeling Language.

I. INTRODUCTION

Even though the phrase „software crisis‟ is 40 years old,

software still takes too long to develop, costs too much, and

does not work well when eventually delivered. System design

is one of the most decisive and volatile phase in the software

engineering process. The software development and the

process that brings software into work out everyday activities

have become a critical issue for modern organizations. The

traditional way of software development has always been

questioned, and people have been looking for new ways to

improve the software development process. Most of the

software companies develop the software by a group of

people, even 1,000 to 10,000 members. These members are

divided into some groups like software analysts, software

designers, software developers, software testers, and software

managers. Software analyst has to gather the software

requirements specification from the client. After proper study

of system document as a whole, they may prepare software

requirements specification and it has to be duly approved by

the client. The designer has to go through the SRS document

completely and then go for designing the software [9].

Numerous approaches and methods intended at highlighting

software design problems and at sustaining designers in

improving software quality have been proposed in recent

years [1], [2]. One of the major tools used for designing the

software is Unified Modeling Language. Using UML models

one can easily describe the system. Large design models

contain thousands of model elements. Software Engineers

easily get overwhelmed maintaining the reliability of such

design models over time [3], [4] and choosing reliable

identifier for their UML Model is indispensable.

II. PROBLEM DEFINITION

A. Need of Software Requirement Specification

A software requirements specification (SRS) is a complete

description of the activities of the software to be developed. It

comprises a set of use cases that depict all of the interactions

that the users will have with the software. SRS also includes

functional requirements, which define the internal workings

of the software like technical details, data manipulation and

processing, calculations, and other specific functionalities. In

addition, it also contains nonfunctional requirements, which

oblige conditions on the system design or implementation.

Therefore SRS is basic core document that is needed for the

software development process. The proposed system extracts

the valid information from the SRS and suggests suitable

name for identifiers for constructing UML Models.

B. Need of UML diagrams

Software is very intangible and hard to visualize. A visual

modeling language, such as Unified Modeling Language

(UML), allows software to be developed visualized in

multiple dimensions, so that the software engineers could

completely understand before construction begins [10], [11].

The overall possibility of the software can quickly and easily

be defined at the beginning of the software development with

a high level model allowing for precise estimation.

Additional detail can then be added to each part of the

software as it is constructed, until finally the system emerges

as code [9], [14], [17]. UML has two diagrams that are used

for behavior specification: the activity diagram and the state

diagram. These two diagrams and the class diagram which is

used for modeling the structural aspects of the object model

give the framework that allows 100% code generation [12],

[13], [18]. Therefore if we choose identifiers for the

construction of UML models, we don‟t need to bother about

selecting proper and relevant identifiers for the source code.

If UML model has the relevant identifier, then its converted

source code also will have the same set of identifiers.

Semantics Based Identifier Mining for UML

Models
Bala Sundara Ganapathy Nadesan, Dr.K.Alagarsamy

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

62

C. Need of proper Identifiers

 Quality is important to all software engineering projects as

it affects the bottom line: lower quality leads to higher costs

[16]. Software quality is impacted by program, and program

quality is impacted by design entities such as UML Model

and their identifier naming [6], [7]. The particular interest

herein is the key role that identifier naming plays in the

design quality. There are various earlier studies that

motivated us for studying identifiers. Deissenbock and Pizka

state that “research on the cognitive processes of language

and text understanding shows that it is the semantics

inherent to words that determine the comprehension

process” [8]. Another motivation for studying identifiers

comes from Rilling and Klemola who note that “In computer

programs, identifiers represent defined concepts” [15].

Caprile and Tonella state that “Identifier names are one of

the most important sources of information about program

entities” [5]. Takang et al. opine that “The quality of

identifier names is an issue that merits closer consideration

and exploration in its own right” [19]. Therefore the proper

choice of identifier for the UML models is obligatory.

III. A NARRATIVE APPROACH FOR IMPROVING

THE QUALITY OF THE IDENTIFIER MATH

This section describes a narrative approach for improving

the quality of the identifiers used in various UML Models

during software development. The proposed approach is

based on the assumption that system designers are induced to

make the UML Models and its identifiers more consistent

with domain terms if the software development environment

provides information about the textual similarity between the

UML model being drawn and the related high-level artifacts

[21], [22] . Clearly, the proposed approach is based on the

assumption that high-level documentation like System

Requirement Specification (SRS) and module specification is

available during the development process. Figure.1 shows

the flow of information between a designer and the

Integrated Development Environment (IDE) in the proposed

approach.

A. Importing Software Requirement Specification

The proposed system has to accept software requirement

specification document either available as a text file or word

processing document, from which terms are extracted [27]

and filtered for identifying the suitable identifiers for the

construction of UML models.

B.Term Extraction and Filtering

When designers are designing a UML model artifact, they

can be continuously informed about the list of identifiers

needed for the model. To do this, list of identifiers has been

extracted and filtered from the system requirement

specifications or model specifications. In order to extract and

filter the relevant identifiers, the system will find the textual

tokens and punctuations.

e.g.,

Sample System requirement Specification: Vendor

Master

 Vendor Master details are maintained by the

Purchase section along with their information that

are specified below (Societies & Suppliers of Yarn,

Silk and Cotton)

 Basic details (General Information) like Vendor Id,

Vendor Name, Primary Address, Contact Address,

and Telephone Numbers.

 Account details of the vendor like the mode of

payment, currency used for payment, vendor

account to be credited, vendor bank name and

account number

 Transaction history of the vendor which includes the

monthly transaction details for the electricity.

 From the above specification system will find the textual

token Vendor Master and its module specific identifiers like

Vendor Id, Vendor Name, Primary Address, Contact

Address, Telephone Numbers, Email Id etc. that could be

extracted using delimiters [23].

C. Identifier Composing

 The lists of identifiers are composed from the specification

document. These high-level artifacts are then indexed using

any suitable data structures, and it has been suggested for the

construction of UML models. The system designer has to

Fig 1. Improving the Quality of the Identifier

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

63

select the identifiers for their models. If the suggested

identifiers are too long or not relevant, then query has to be

sent to the semantic analyzer for its betterment [24], [26].

Semantic analyzer extracts relevant identifiers using

Ontology Inference Service. The OIS query results are

indexed and then again sent to the system designer for the

identifier selection.

D. Ontology Construction

 Ontology Construction is being built using WordNet, a

linguistic ontology. WordNet is a semantic lexicon for the

English language. It groups English words into sets of

synonyms called synsets; provides short, general definitions;

and records the various semantic relations between these

synonym sets. The purpose is twofold: to produce a

combination of dictionary and thesaurus that is more

intuitively usable, and to support automatic text analysis and

artificial intelligence applications. The database and

software tools can be downloaded and used freely. The

database can also be browsed online. WordNet was created

and is being maintained at the Cognitive Science Laboratory

of Princeton University under the direction of psychology

professor George A. Miller. Development began in 1985.

Over the years, the project received about $3 million of

funding, mainly from government agencies interested in

machine translation. As of 2006, the database contains about

150,000 words organized in over 115,000 synsets for a total

of 207,000 word-sense pairs; in compressed form, it is about

12 megabytes in size. Thus with the help of this ontology, an

investigator searching for a term will be able to discover. The

use of ontology will allow the search capability on the

metadata catalog and other web resources beyond just using

keywords.

E. Ontology Inference Service

 The Ontology Inference Service (OIS) is a Java API for

WordNet Searching (JAWS) that provides Java applications

with the ability to retrieve data from the WordNet database

[28], [29]. It is a simple and fast API that is compatible with

both the 2.1 and 3.0 versions of the WordNet database files

and can be used with Java 1.4 and later. JAWS were created

by Brett Spell as a project for Dr. Margaret Dunham's class

on Information Retrieval at Southern Methodist University .

IV. CONCLUSION

The paper proposed a narrative approach to help designers

to improve the quality of the identifiers used in the UML

model. Constructing research artifact and assessing the same

to test for quality, effectiveness, and efficiency, and abstract

the knowledge gained in terms of design ethics and theories

are among the important research activities in design science

research. It‟s future work to enhance the process of

extracting the suitable identifiers from the SRS, and bring

out its implementation to carrying out explorations of classes

of identifier mining tasks. Experimentation and evaluation of

the above suggested aims to find the quality of design model

that leads to the quality of the software could be undertaken.

REFERENCES

[1] Alexander Egyed, “Automatically Detecting and Tracking

Inconsistencies in Software Design Models” IEEE Trans.

Software Eng., vol. 37, no. 2,pp. 188 – 204, Mar/Apr. 2011.

[2] S. Kim, E.J. Whitehead, Jr., and Y. Zhang, “Classifying

Software Changes: Clean or Buggy?” IEEE Trans. Software

Eng., vol. 34, no. 2, pp. 181-196, Mar./Apr. 2008.

[3] S. Kim, T. Zimmermann, E.J. Whitehead Jr., and A. Zeller,

“Predicting Faults from Cached History,” Proc. 29th Int‟l

Conf. Software Eng., pp. 489-498, 2007.

[4] D. Lawrie, H. Feild, and D. Binkley, “Quantifying Identifier

Quality: An Analysis of Trends,” Empirical Software Eng., vol.

12, no. 4, pp. 359-388, 2007.

[5] B. Caprile and P. Tonella. Restructuring program identifier

names. In ICSM, 2000.

[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective

Identifier Names for Comprehension and Memory,”

Innovations in Systems and Software Eng., vol. 3, no. 4, pp.

303-318, 2007.

[7] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What‟s in a

Name? A Study of Identifiers,” Proc. 14th IEEE Int‟l Conf.

Program Comprehension, pp. 3-12, 2006.

[8] F. Deissenbock and M. Pizka. Concise and consistent naming.

In Proceedings of the 13th International Workshop on Program

Comprehension (IWPC 2005), St. Louis, MO, USA, May

2005. IEEE Computer Society.

[9] A. Abadi, M. Nisenson, and Y. Simionovici, “A Traceability

Technique for Specifications,” Proc. 16th IEEE Int‟l Conf.

Program Comprehension, pp. 103-112, 2008.

[10] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.

Merlo, “Recovering Traceability Links between Code and

Documentation,” IEEE Trans. Software Eng., vol. 28, no. 10,

pp. 970-983, Oct. 2002.

[11] L.C. Briand, Y. Labiche, and L. O‟Sullivan, “Impact Analysis

and Change Management of UML Models,” Proc. Int‟l Conf.

Software Maintenance, p. 256, 2003.

[12] L.A. Campbell, B.H.C. Cheng, W.E. McUmber, and K.

Stirewalt, “Automatically Detecting and Visualizing Errors in

UML Diagrams,” Requirements Eng. J., vol. 7, pp. 264-287,

2002.

[13] A. Egyed, “Automated Abstraction of Class Diagrams,” ACM

Trans. Software Eng. and Methodology, vol. 11, pp. 449-491,

2002.

[14] A. Egyed, “Instant Consistency Checking for the UML,” Proc.

28th Int‟l Conf. Software Eng., pp. 381-390, 2006.

[15] J. Rilling and T. Klemola. Identifying comprehension

bottlenecks using program slicing and cognitive complexity

metrics. In Proceedings of the 11th IEEE International

Workshop on Program Comprehension, Portland, Oregon,

USA, May 2003.

[16] H. Saiedan and L. M. Mc Clanahan. Frameworks for quality

software process: SEI capability maturity model. Software

Quality Journal, 5(1):1, 1996.

[17] J. Rumbaugh, J. Ivar, and B. Grady, The Unified Modeling

Language Reference Manual. Addison Wesley, 1999.

http://en.wikipedia.org/wiki/WordNet
http://en.wikipedia.org/wiki/Semantic_lexicon
http://en.wikipedia.org/wiki/English_language
http://en.wikipedia.org/wiki/Synsets
http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/Synonym
http://en.wikipedia.org/wiki/Dictionary
http://en.wikipedia.org/wiki/Thesaurus
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Online
http://en.wikipedia.org/wiki/Princeton_University
http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Professor
http://en.wikipedia.org/wiki/George_A._Miller
http://en.wikipedia.org/wiki/1985
http://en.wikipedia.org/wiki/Machine_translation
mailto:tbspell@verizon.net
http://engr.smu.edu/~mhd/
http://www.smu.edu/

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

64

[18] G. Antoniol, G. Casazza, and A. Cimitile, “Traceability

Recovery by Modeling Programmer Behavior,” Proc. Seventh

Working Conf. Reverse Eng., pp. 240-247, 2000.

[19] A. Takang, P. Grubb, and R.Macredie. The effects of

comments and identifier names on program comprehensibility:

an experiential study. Journal of Program Languages, 4(3),

1996.

[20] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora,

“Recovering Traceability Links in Software Artifact

Management Systems Using Information Retrieval Methods,”

ACM Trans. Software Eng. and Methodology, vol. 16, no. 4,

2007.

[21] A. Marcus and J.I. Maletic, “Recovering Documentation-to-

Source-Code Traceability Links Using Latent Semantic

Indexing,” Proc. 25th Int‟l Conf. Software Eng., pp. 125-135,

2003.

[22] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W.

Lukasik, and C. De Palma, “Supporting Software Evolution

through Dynamically Retrieving Traces to UML Artifacts,”

Proc. Seventh IEEE Int‟l Workshop Principles of Software

Evolution, pp. 49-54, 2004.

[23] N. Anquetil and T. Lethbridge, “Assessing the Relevance of

Identifier Names in a Legacy Software System,” Proc. 1998

Conf. Centre for Advanced Studies on Collaborative Research,

1998.

[24] F. Deissenboeck and M. Pizka, “Concise and Consistent

Naming,” Software Quality J., vol. 14, no. 3, pp. 261-282,

2006.

[25] D. Lawrie, H. Feild, and D. Binkley, “An Empirical Study of

Rules for Well-Formed Identifiers,” J. Software Maintenance,

vol. 19, no. 4, pp. 205-229, 2007.

[26] B. Caprile and P. Tonella, “Nomen Est Omen: Analyzing the

Language of Function Identifiers,” Proc. Sixth IEEE Working

Conf. Reverse Eng., pp. 112-122, 1999.

[27] D. Lawrie, H. Feild, and D. Binkley, “Extracting Meaning

from Abbreviated Identifiers,” Proc. Seventh IEEE Int‟l

Working Conf. Source Code Analysis and Manipulation, pp.

213-222, 2007.

[28] John Davies, Dieter Fensel, and Frank Van Harmelen,

“Towards the Semantic Web: Ontology-driven Knowledge

Management,” J. Wiley, 2003.

[29] Latifur Khan, “Ontology-based Information Selection,” Ph.D.

Thesis, University of South California, 2000.

AUTHOR’S PROFILE

Bala Sundara Ganapathy Nadesan received the

Master‟s Degree in Computer Applications in 2001

and the Master of Philosophy Degree in Computer

Science in 2007 from Madurai Kamaraj University,

India. He has registered for Ph.D. in the same

University and is currently pursuing research in

software engineering. He is working as an Assistant

Professor at Panimalar Engineering College,

Chennai, India. He has published research articles in

international journals and conference proceedings, and authored textbooks. He

serves as an editorial and reviewer board member of International Conference

on Information Science and Applications.

Dr. K.Alagarsamy is the Associate Professor at

Madurai Kamaraj University, India. He secured his

M.C.A., M.Phil. and Ph.D. in Computer Science

from Madurai Kamaraj University, India. He has

published 18 international research articles and few

books, and participated in many international

seminars. He has 28 years of experience in teaching

and research. His current research includes software

engineering, program comprehension, reverse

engineering, reengineering, software configuration management, workflow

management, document management, visual languages, web engineering,

e-learning and data mining.

